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SUMMARY

Irregular topography can cause strong scattering and defocus-
ing of propagating surface waves. Thus it is important to con-
sider such effects when inverting surface waves for the shallow
S-velocity structures. We present a 3D surface-wave disper-
sion inversion method that takes into account the topographic
effects modeled by a 3D spectral element solver. The objective
function is the frequency summation of the squared wavenum-
ber ∆κ(ω)2 differences along each azimuth angle of the funda-
mental or higher modes of Rayleigh waves in each shot gather.
Here, the wavenumber κ(ω) associated with the dispersion
curve is calculated using the geodesic distance along the ir-
regular free surface. Numerical tests on synthetic data demon-
strate that 3D topographic wave equation dispersion inversion
(TWD) can accurately invert for the S-velocity model from the
dispersion curves computed from the data recorded on irregu-
lar topography.

INTRODUCTION

Irregular topography is known to have a significant impact
on the amplitudes and phases of propagating surface waves
(Snieder, 1986; Fu and Wu, 2001). Ignoring topography in
surface wave inversion can lead to significant errors in the in-
verted model. Moreover, it is expected that 2D assumptions
cannot fully approximate wave propagation in the presence of
significant 3D variations in topography. In these cases, it is
important to employ a 3D surface-wave inversion method that
fully accounts for propagation in irregular topography.

When the wavelength is much smaller than the characteris-
tic scale of the topographic relief, the source-receiver distance
factor may play a significant role, especially for the fundamen-
tal mode of the Rayleigh wave whose propagation is strongly
influenced by the free surface (Köhler et al., 2012). Köhler
et al. (2012) empirically investigated the effect of topography
on the propagation of short-period Rayleigh waves by elastic
simulations with a spectral element code and a 3-D model with
significant topographical variations. They showed that topog-
raphy along a profile could result in an underestimation of the
phase velocities associated with the surface waves.

Accounting for topography is also essential for full waveform
inversion (FWI) of surface waves. Nuber et al. (2016) and Pan
et al. (2018) use simulations to demonstrate that even minor to-
pographic variations of the free surface will have a significant
effect in FWI. They found that neglecting topography with an
amplitude fluctuation greater than half the minimum seismic
wavelength leads to significant artifacts in the inverted image
(Nuber et al., 2016).

Li and Schuster (2016) developed a wave equation dispersion

inversion (WD) method for inverting dispersion curves associ-
ated with surface waves. Liu et al. (2018) extended it to the
3D case, which includes the multi-scale and layer-stripping
WD proposed by Liu and Huang (2018). Empirical evidence
suggests that WD has the benefit of robust convergence com-
pared to the tendency of FWI (Groos et al., 2014; Pérez Solano
et al., 2014; Dou and Ajo-Franklin, 2014; Yuan et al., 2015;
Groos et al., 2017) to getting stuck in local minima. It has the
advantage over the traditional inversion of dispersion curves
(Haskell, 1953; Xia et al., 1999, 2002; Park et al., 1999) in that
it does not assume a layered model and is valid for arbitrary 2D
or 3D media. Li et al. (2019) developed 2D topographic WD
(TWD) which incorporates the free-surface topography into
the finite-difference solution to the elastic wave equation. Our
new paper now extends 2D TWD to the 3D case. To account
for strong variations in topography, we use the elastic model-
ing code SPECFEM3D based on the spectral-element method
(SEM) (Komatitsch and Vilotte, 1998; Komatitsch and Tromp,
1999). The inversion algorithm is written in the format of Seis-
Flows, an open source Python package that can interface with
SPECFEM3D (Modrak et al., 2018).

After the introduction, we describe the theory of 3D TWD
and its implementation. We also discuss how to calculate the
source-receiver offset distance along a 3D irregular surface,
which is used to calculate the dispersion curves of the data
collected on the irregular surface. Numerical tests on synthetic
data are presented in the third section to validate the theory.
Finally, the discussion and conclusions are given in the fourth
and last sections.

THEORY

We first present the mathematical theory for 3D TWD, follow-
ing the derivation of Liu et al. (2018), except it is for a 3D
irregular surface. Following this, we show how to calculate
the source-receiver distance on a 3D irregular surface. Finally,
the workflow of 3D TWD is given.

Theory of 3D TWD
The basic theory of 3D TWD is the same as 3D WD (Liu et al.,
2018), except a 3D topographic surface is now included in the
formulation. The wave-equation dispersion inversion method
inverts for the S-wave velocity model to minimize the disper-
sion objective function

ε =
1
2

∑
ω

∑
θ

[

residual=∆κ(θ ,ω)︷ ︸︸ ︷
κ(θ ,ω)pre−κ(θ ,ω)obs]

2, (1)

where κ(ω,θ)pre represents the predicted dispersion curve picked
from the simulated spectrum along the azimuth angle θ , and
κ(ω,θ)obs describes the observed dispersion curve obtained
from the recorded spectrum along the azimuth θ . In the 2D
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3D TWD

case, the azimuthal angles have only two values: 0◦ and 180◦,
corresponding to the left and right directions, respectively.

The gradient γ(xxx) of ε with respect to the S-wave velocity
vs(xxx) is given by Liu et al. (2018):

γ(xxx) =
∂ε

∂vs(xxx)
=−

∑
ω

4vs0(xxx)ρ0(xxx)R
{

backpro jected data=Bk,k(xxx,ω)∗︷ ︸︸ ︷∫ ∑
θ

1
A(θ ,ω)

∆κ(θ ,ω)D̂(ggg,θ ,ω)∗obsG3k,k(ggg|xxx)dggg

source= f j, j(xxx,ω)︷ ︸︸ ︷
D j, j(xxx,ω)

backpro jected data=Bn,k(xxx,ω)∗︷ ︸︸ ︷
−1

2

∫ ∑
θ

1
A(θ ,ω)

∆κ(θ ,ω)D̂(ggg,θ ,ω)∗obsG3n,k(ggg|xxx)dggg

source= fn,k(xxx,ω)︷ ︸︸ ︷[
Dk,n(xxx,ω)+Dn,k(xxx,ω)

]}
, (2)

where vs0(xxx) and ρ0(xxx) are the reference S-velocity and den-
sity distributions at location xxx, respectively, and A(θ ,ω) is
given in Liu et al. (2018). Di(xxx,ω) denotes the ith compo-
nent of the particle velocity recorded at xxx resulting from a
vertical-component force. The Einstein notation is assumed
in equation 2, where Di, j =

∂Di
∂x j

for i, j ∈ {1,2,3}. The 3D

harmonic Green’s tensor G3 j(ggg|xxx) is the particle velocity at
location ggg along the jth direction resulting from a vertical-
component source at xxx in the reference medium. The term
fi, j(xxx,ω) for i and j ∈ {1,2,3} is the downgoing source field
at xxx, and Bi, j(xxx,sss,ω) for i and j ∈ {1,2,3} is the backprojected
scattered field at xxx. D̂(ggg,θ ,ω)∗obs represents the weighted con-
jugated data defined as

D̂(ggg,θ ,ω)∗obs = 2πiggg ·nnneiggg·nnn∆κ

∫
C

D(ggg′,ω)∗obsdggg′, (3)

where nnn = (cosθ ,sinθ) and C is the line (ggg′ − ggg) · nnn = 0.
The above equation indicates that the gradient is computed
using a weighted zero-lag correlation between the source and
backward-extrapolated receiver wavefields.

The optimal S-wave velocity model vs(xxx) is obtained using the
steepest-descent formula (Nocedal and Wright, 2006)

vs(xxx)(k+1) = vs(xxx)(k)−αγ(xxx), (4)

where α is the step length and the superscript (k) denotes the
kth iteration. In practice a preconditoned conjugate gradient
method can be used for faster convergence.

Source-receiver Distance on a 3D Irregular Surface
When the wavelength is smaller than the characteristic wave-
length of the topographical relief, the source-receiver distance
factor may play a significant role. Thus, we should calculate
the source-receiver offset distance along the actual irregular
surface instead of assuming it to be a flat surface.

For the flat free surface shown in Figure 1a, the source-receiver
offset l along the surface is the length of the line segment sr1,
which is the same as the Euclidean distance le between the
source at s and the receiver at r1. When the surface is irregular

as shown in Figure 1b, the source-receiver offset l along the
surface is the length of the segment of a curve on the surface,
which is larger than the Euclidean distance le. The source-
receiver offset distance along the irregular surface is called the
“geodesic distance”, which is the shortest route between two
points on the surface.

Figure 2 shows the offset L and azimuth θ from the source at
s to the receiver at r on an irregular surface. Here, the azimuth
is along the direction from s′ to r′, where s′ and r′ are the
projections of points s and r on the plane z = 0, respectively.
Once we get the offset and azimuth for the receivers, we can
calculate the dispersion curve of the data by the discrete Radon
transform in the frequency domain.

a) Flat Surface b) Irregular Surface

Figure 1: Schematic diagram shows the offset distance l along
the (a) flat and (b) irregular surfaces from the source at s (the
red star) to the receiver at r1, where le is the Euclidean dis-
tance.

Figure 2: Schematic diagram shows the offset L and the az-
imuth θ from the source at s (red star) to the receiver at r.

Workflow of 3D TWD
The workflow for implementing 3D TWD is summarized in
the following steps.

1. Remove the first-arrival body waves and higher-order
modes of the Rayleigh waves in the shot gathers (Li
et al., 2017).

2. Determine the source-receiver offset along the irreg-
ular surface, and the range of the dominant azimuth
angles θ for each shot gather.

3. Apply a discrete Radon transform followed by the tem-
poral Fourier transform of the predicted and observed
common shot gathers (CSGs) to compute the disper-
sion curves κ(θ ,ω) and κ(θ ,ω)obs along each azimuth
angle θ . Calculate the sum of the squared dispersion
residuals in equation 1.

4. Calculate the weighted data D̂(ggg,ω)∗obs according to
equation 3. The source-side and receiver-side wave-
fields in equation 2 are computed by the SEM solution
to the 3D elastic wave equation.
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3D TWD

5. Calculate and sum the gradients for all the shot gathers.
Source illumination is sometimes needed as a precon-
ditioner (Plessix and Mulder, 2004).

6. Calculate the step length and update the S-wave tomo-
gram using the steepest-descent or conjugate gradient
methods. In practice, we use a preconditoned conju-
gate gradient method.

NUMERICAL RESULTS

The effectiveness of 3D TWD is evaluated with the 3D Foothills
model. The observed and predicted data are generated by a
spectral-element solver SPECFEM3D (Komatitsch and Vilotte,
1998; Komatitsch and Tromp, 1999). The mesh is generated
by the software package CUBIT. For 3D TWD, only the S-
wave velocity model is inverted and the true P-wave veloc-
ity model is used for modeling the predicted surface waves.
The density model is homogeneous with ρ =2000 kg/m3. The
source wavelet is a Ricker wavelet for the synthetic data.

The topography of the 3D Foothills model shown in Figure 3
is extracted from the 3D SEG Advanced Modeling (SEAM)
phase II foothills model (Oristaglio, 2012), where the red lines
are the geodesic paths on the triangular mesh for the source
marked as the red star. The maximum elevation difference of
the topography is 1.2 km. The 3D Foothills S-wave velocity
model shown in Figure 4a is modified from the 2D Foothills
model in Figure 2a of Brenders et al. (2008). The P-wave ve-
locity is defined as vp =

√
3vs and the physical size of the ve-

locity model is 7 km and 3.5 km in the x and y directions,
respectively, and is 2 km deep in the z-direction. The mesh
used in the SPECFEM3D is shown in Figure 4b. The initial
S-velocity model is shown in Figure 4c. Figure 5 shows the ac-
quisition geometry for this experiment, where 2312 geophones
are distributed on the surface, which are arranged in 17 paral-
lel lines along the x-direction, and each line has 136 receivers.
The in-line and cross-line receiver intervals are 50 m and 190
m, respectively. There are 80 vertical-component shots dis-
tributed on a 10×8 grid with source intervals of 750 m and 380
m in the x and y directions, respectively. The peak frequency
of the source is 5 Hz and the observed data are recorded for
2.40 seconds with a 0.8 ms sampling rate.

The fundamental dispersion curves for each CSG are picked
for the frequencies from 2 to 9 Hz along the dominant az-
imuths from 0◦ to 360◦ with an interval of 5◦. For example,
Figure 6 shows the observed dispersion curves calculated from
the CSGs for the sources located at points A, B, C and D in-
dicated in Figure 5, where the black dashed lines represent the
contours of the observed dispersion curves. The cyan lines
represent the contours of initial dispersion curves.

3D TWD is then used to invert for the S-velocity distribu-
tions. Figure 4d displays the inverted S-wave velocity model.
The vertical slices for the true, initial and inverted models are
shown in Figures 7a, 7b and 7c, respectively, where the black-
and white- dashed lines indicate the large velocity contrast
boundaries and the boundaries 0.5 km below the free surface,
respectively. The depth slices 300 m below the free surface for

the true, initial and inverted models are shown in Figures 8a,
8b and 8c, respectively. We can see that the S-velocity model is
significantly updated in the shallow part, where most updates
are confined to the region within 0.5 km from the surface. The
overall velocity structure is well recovered, even though some
small-scale features are still missing, which might be caused
by the limited frequency content.

The contours of the predicted dispersion curves for the sources
located at points A, B, C and D in Figure 5 are represented
by the red dash-dot lines in Figure 6, which agree with the
contours of the observed dispersion curves. Figure 9 compares
the observed (red) and synthetic (blue) traces at the far source-
receiver offsets predicted from the initial and inverted models
for (a) and (b) with CSG at B, and (c) and (d) with CSG at C.
It can be seen that the synthetic waveforms computed from the
3D TWD tomogram closely agree with the observed ones.

CONCLUSIONS

We present the 3D TWD method that accounts for an irregular
recording surface. The effectiveness of this method is numer-
ically demonstrated with synthetic data recorded on an irreg-
ular free surface. The main limitation of 3D WD is its high
computational cost, which is more than an order-of-magnitude
greater than that of 2D WD. However, the improvement in ac-
curacy compared to 2D WD can sometimes make this extra
cost worthwhile when there are significant near-surface lateral
variations in the S-velocity distribution.
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Figure 3: Triangle mesh for the topography of the 3D Foothill
model, where the red lines are the geodesic paths for the source
marked as the red star.
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3D TWD

(a) True S-velocity Model
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Figure 4: (a) True S-velocity model, (b) corresponding mesh,
(c) initial S-velocity model and (d) S-velocity tomogram.
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Figure 5: Acquisition geometry for the numerical tests with
data generated for the 3D Foothill model, where the red dots
and blue circles indicate the locations of the receivers and
sources, respectively.

(a) Dispersion Curves at Source A
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(b) Dispersion Curves at Source B
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(c) Dispersion Curves at Source C
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(d) Dispersion Curves at Source D
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Figure 6: Observed dispersion curves for the sources located
at (a) A, (b) B, (c) C and (d) D indicated in Figure 5b, where
the black dashed lines, the cyan dash-dot lines and the red lines
represent the contours of the observed, initial and inverted dis-
persion curves, respectively.
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Figure 7: Slices of the (a) true, (b) initial, and (c) inverted
S-velocity models at y = 433 m, where the black and white
dashed lines indicate the large velocity contrast boundaries and
the boundaries 0.5 km below the free surface, respectively.
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(c) Depth Slice of 3D Tomogram
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Figure 8: Depth slices 300 m below the surface for the (a) true,
(b) initial and (c) inverted Foothill S-velocity models.
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Figure 9: Comparison between the observed (red) and syn-
thetic (blue) traces at far offsets predicted from the initial
model (LHS panels) and 3D tomogram (RHS panels) for CSG
B in (a) and (b), and CSG C in (c) and (d). Here, the loca-
tions of points B and C and the line number are indicated in
Figure 5.
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