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Summary 
 
Sparse least squares migration (SLSM) estimates the reflectivity distribution that honors a sparsity condition. This 
problem can be reformulated by finding both the sparse coefficients and basics functions from the data to predict 
the migration image. This is designated as neural network least squares migration (NLSM), which is a more general 
formulation of SLSM. This reformulation opens up new thinking for improving SLSM by adapting ideas from the 
machine learning community. 

 



Sparse Least Squares Migration

The sparse least squares problem (SLSM) is defined as finding the reflectivity coefficients mi in the N×1
vector m that minimize the objective function ε:

ε =
1
2
||Γm−mmig||22 +λS(m), (1)

where Γ = LT L represents the migration Green’s function (Schuster and Hu, 2000), λ > 0 is a positive
scalar, mmig = LT d is the migration image obtained by migrating the recorded data d with the migration
operator LT , and S(m) is a sparseness function. For example, the sparseness function might be S(m) =
||m||1 or S(m) = log(1+ ||m||22).

The solution to equation 1 is

m∗ = argmin
m

[1
2
||Γm−mmig||22 +λS(m)

]
, (2)

which can be approximated by an iterative gradient descent method:

m(k+1)
i = m(k)

i −α[ΓT

r=residual︷ ︸︸ ︷
(Γm−mmig)]i−λS(m)′i,

= m(k)
i −α[ΓT r]i−λS(m)′i. (3)

Here, S(m)′i is the derivative of the sparseness function with respect to the model parameter mi and the
step length is α . Vectors (matrices) are denoted by boldface lowercase (uppercase) letters.

As shown in Schuster and Hu (2000), the poststack migration (Yilmaz, 2001) image m(x)mig in the
frequency domain is computed by weighting each reflectivity value m(z) by Γ(x|z) and integrating over
the model-space coordinates z:

for x,z ∈ Dmodel : m(x)mig =
∫

Dmodel

dz

Γ(x|z)︷ ︸︸ ︷∫
y∈Ddata

dyω
4G(x|y)2∗G(y|z)2 m(z), (4)

where the migration Green’s function Γ(x|z) is given by

for x,z ∈ Dmodel : Γ(x|z) =
∫

y∈Ddata

dyω
4G(x|y)2∗G(y|z)2. (5)

Here we implicitly assume a normalized source wavelet in the frequency domain, and Dmodel and Ddata
represent the sets of coordinates in, respectively, the model and data spaces. The term G(x′|x) =
eiωτxx′/||x− x′|| is the Green’s function for a source at x and a receiver at x′ in a smoothly varying
medium1. The traveltime τxx′ is for a direct arrival to propagate from x to x′.

The physical interpretation of the kernel Γ(x′|x) is that it is the migration operator’s2 response at x′ to a
point scatterer at x, otherwise known as the MGF or the migration Green’s function (Schuster and Hu,
2000). It is analogous to the point spread function (PSF) of an optical lens for a point light source at x in
front of the lens and its optical image at x′ behind the lens on the image plane (Hu and Schuster, 1998).
In discrete form, the modeling term [Γm]i in equation 4 can be expressed as

[Γm]i = ∑
j

Γ(xi|z j)m j. (6)

1If the source and receiver are coincident at x then the zero-offset trace is represented by the squared Green’s function
G(x|x′)2.

2This assumes that the zero-offset trace is generated with an impulsive point source with a smoothly varying background
velocity model, and then migrated by a poststack migration operation. It is always assumed that the direct arrival is muted and
there are no multiples.
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with the physical interpretation that [Γm]i is the migration Green’s function response at xi for the re-
flectivity model m. An alternative interpretation is that [Γm]i is the weighted sum of basis functions
Γ(xi|z j) where the weights are the reflection coefficients m j and the summation is over the j index. We
will now consider this last interpretation and redefine the LSM problem as finding both the weights m j
and the basis functions Γ(xi|z j) that minimize the objective function in equation 2. This can be shown
to be equivalent to the problem of a fully connected (FC) neural network (Schuster and Liu, 2019).

Theory of Neural Network LSM

The neural network least squares migration (NNLSM) algorithm in the image domain is defined as
solving for both the basis functions Γ̃(xi|x j) and m̃ j that minimize the objective function defined in
equation 1. In contrast, SLSM only finds the least squares migration image in the image domain and
uses the pre-computed migration Green’s functions that solve the wave equation.

The NNLSM solution is defined as

(m̃∗, Γ̃∗) = argmin
m̃, Γ̃

[1
2
||Γ̃m̃−mmig||22 +λS(m̃)

]
, (7)

where now both Γ̃
∗ and m̃∗ are to be found. The functions with tilde’s are mathematical constructs that

are not necessarily identical to those based on the physics of wave propagation in equation 1.

The explicit matrix-vector form of the objective function in equation 7 is given by

ε =
1
2 ∑

i

[
∑

j
Γ̃(xi|z j)m̃ j−mmig

i

]2
+λS(m̃). (8)

and its Fréchet derivative with respect to Γ̃(xi′ |z j′) is given by

∂ε

∂ Γ̃(xi′ |z j′)
= ∑

j
(Γ̃(xi′ |z j)m̃ j− m̃mig

i′ )m̃ j′ . (9)

The iterative solution of equation 7 is given in two steps (Olshausen and Field, 1996).

1. Iteratively estimate m̃i by the gradient descent formula used with SLSM:

m̃(k+1)
i = m̃(k)

i −α[Γ̃
T
(Γ̃m̃−mmig)]i−λS(m̃)′i. (10)

However, one migration image mmig is insufficient to find so many unknowns. In this case the
original migration image is broken up into many small pieces so that there are many migration
images to form examples from a large training set. For prestack migration, there will be many
examples of prestack migration images, one for each shot, and the compressive sensing technique
denoted as VISTA (Ahmad et al., 2015) is used for the calculations.

2. Update the basis functions Γ̃(xi|z j) by inserting equation 9 into the gradient descent formula to
get

Γ̃(xi′ |z j′)
(k+1) = Γ̃(xi′ |z j′)

(k+1)−α
∂ε

∂ Γ̃(xi′ |z j′)
,

= Γ̃(xi′ |z j′)
(k+1)−α(

{
∑

j
Γ̃(xi′ |z j)m̃ j

}
−mmig

i′ )m̃ j′ . (11)

It is tempting to think of Γ̃(x|x′) as the migration Green’s function and m̃i as the component of
reflectivity. However, there is yet no justification to submit to this temptation and so we must con-
sider, unlike in the SLSM algorithm, that Γ̃(x|x′) is a sparse basis function and m̃i is its coefficient.
To get the true reflectivity then we should equate equation 6 to ∑ j Γ̃(xi,x j)m̃ j and solve for m j.
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Figure 1 a) 2D SEG/EAGE salt model, b) RTM image, and c) learned basis functions, d) basis function
No. 11, e) coefficient No. 11, and f) reconstructed image by the eleventh basis function and its coefficient,
g) stacked coefficients, h) stacked the selected coefficients, and i) migration image after filtering.

Numerical Examples

We will test the feasibility of estimating the basis functions and coefficients for NNLSM in the image
domain with synthetic and field data examples including data associated with 1) the 2D SEG/EAGE salt
model and 2) the F3 block of data recorded offshore in the Netherlands.

The 2D SEG/EAGE salt velocity model shown in Figure 1a is used to test NNLSM by the unsupervised
feature learning method of convolutional sparse coding (Liu et al., 2018). The grid size of the model is
100 grid points in the z-direction and 401 grid points in the x-direction. The grid interval is 20 m in both
the x and z directions. Figure 1b shows the reverse time migration (RTM) image. Assume that there are
11 basis functions Γ̃ and each of them has the size of 17 grid points in the z-direction (0.32 km, about
one and a half wavelength) and nine grid points (0.16 km) in the x-direction marked as the yellow box
in Figure 1b. Equation 7 is solved for both m̃ and Γ̃ by the two-step iterative procedure denoted as the
alternating descent method. The computed basis functions are shown in Figure 1c, where the eleventh
basis function Γ̃11 is marked by the yellow box which is displayed in Figure 1d in a zoom view. The
coefficient m̃11 is shown in Figure 1e. The convolution result of the basis function Γ̃11 and the coefficient
m̃11 is displayed in Figure 1f. Here the basis function Γ̃11 can be seen as the blurring filter which blurs
the coefficient m̃11 to give the blurred image Γ̃11 ∗ m̃11. If we stack all the coefficients, we can get the
reflectivity distribution shown in Figure 1g. Because there are migration artifacts in the migration image
as shown in the red box in Figure 1b, some of the basis functions may be learned from those artifacts,
such as the basis function No. 2, 3, 4 and 8. Thus, we need to exclude their corresponding coefficients
and stack the remaining coefficients to get the filtered reflectivity distribution as shown in Figure 1h. It
is evident that there is less noise in the red box of Figure 1h after excluding the coefficients from the
migration artifacts compared to that in Figure 1g. The reconstructed migration image after filtering is
shown in Figure 1, and we can see that there are fewer migration artifacts in the red box.

Next, we apply NNLSM to the field data collected in block F3 in the Southern North Sea (Schroot and
Scüttenhelm, 2003). The time migration image is shown in Figure 2a. The number of the time samplings
is 213 grid points, and the grid size in the x-direction is 301 grid points. Twenty-one 13-by-5 (grid point)
basis functions are learned (see Figure 2b). The size of the basis function is marked as the yellow box
in Figure 2a and 2b. The stacked coefficients (reflectivity distribution) are displayed in Figure 2c. It is
evident that the stacked coefficients can provide a high-resolution migration image. After reconstruction
from the learned basis functions and coefficients, the migration image is shown in Figure 2d with less
noise.
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Figure 2 a) Migration image computed from the F3 offshore block data, b) learned basis functions, c)
stacked coefficients and d) migration image after filtering.

Summary

Sparse least squares migration (SLSM) finds the optimal reflectivity distribution m(x) that minimizes
a sum of migration misfit and sparsity functions. This problem can be reformulated by finding both
the sparse coefficients m̃(z) and basis functions Γ̃(x|z) from the data to predict the migration image
m(x)mig = ∑z Γ̃(x|z)m̃(z). This generalization of SLSM is designated as neural network least squares
migration (NLSM). If the basis functions are required to be the physics-based migration Green’s func-
tions then NLSM reduces to SLSM. As demonstrated in this paper, coherent artifacts in the migration
image can be eliminated by excluding their associated basis functions in the filtered image. One pos-
sibility is to invert the feature maps using the wave equation as described in Schuster (2018). NSLM
provides new ideas from the technology of machine learning for improving least squares migration.
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