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Summary 

Sparse least squares migration (SLSM) estimates the reflectivity distribution that honors a sparsity condition. 
This problem can be reformulated by finding both the sparse coefficients and basics functions from the data to 
predict the migration image. This is designated as neural network least squares migration (NLSM), which is a 
more general formulation of SLSM. This reformulation opens up new thinking for improving SLSM by 
adapting ideas from the machine learning community. 



Introduction

The sparse least squares problem (SLSM) is defined as finding the reflectivity coefficients mi in the N 
×1 vector m that minimize the objective function ε :

ε =
1
2
||Γm−mmig||22 +λS(m), (1)

where Γ = LT L represents the migration Green’s function (Schuster and Hu, 2000), λ > 0 is a positive
scalar, mmig = LT d is the migration image obtained by migrating the recorded data d with the migration
operator LT , and S(m) is a sparseness function. For example, the sparseness function might be S(m) =
||m||1 or S(m) = log(1+ ||m||22).

The solution to equation 1 is

m∗ = argmin
m

[1
2
||Γm−mmig||22 +λS(m)

]
, (2)

which can be approximated by an iterative gradient descent method:

m(k+1)
i = m(k)

i −α[ΓT

r=residual︷ ︸︸ ︷
(Γm−mmig)]i −λS(m)′i,

= m(k)
i −α[ΓT r]i −λS(m)′i. (3)

Here, S(m)′i is the derivative of the sparseness function with respect to the model parameter mi and the
step length is α . Vectors (matrices) are denoted by boldface lowercase (uppercase) letters.

As shown in Schuster and Hu (2000), the poststack migration (Yilmaz, 2001) image m(x)mig in the
frequency domain is computed by weighting each reflectivity value m(z) by Γ(x|z) and integrating over
the model-space coordinates z:

for x,z ∈ Dmodel : m(x)mig =
∫

Dmodel

dz

Γ(x|z)︷ ︸︸ ︷∫
y∈Ddata

dyω4G(x|y)2∗G(y|z)2 m(z), (4)

where the migration Green’s function Γ(x|z) is given by

for x,z ∈ Dmodel : Γ(x|z) =
∫

y∈Ddata

dyω4G(x|y)2∗G(y|z)2. (5)

Here we implicitly assume a normalized source wavelet in the frequency domain, and Dmodel and Ddata
represent the sets of coordinates in, respectively, the model and data spaces. The term G(x′|x) =
eiωτxx′/||x− x′|| is the Green’s function for a source at x and a receiver at x′ in a smoothly varying
medium1. The traveltime τxx′ is for a direct arrival to propagate from x to x′.

The physical interpretation of the kernel Γ(x′|x) is that it is the migration operator’s2 response at x′ to a
point scatterer at x, otherwise known as the MGF or the migration Green’s function (Schuster and Hu,
2000). It is analogous to the point spread function (PSF) of an optical lens for a point light source at x
in front of the lens and its optical image at x′ behind the lens on the image plane. In discrete form, the
modeling term [Γm]i in equation 4 can be expressed as

[Γm]i = ∑
j

Γ(xi|z j)m j. (6)

1If the source and receiver are coincident at x then the zero-offset trace is represented by the squared Green’s function
G(x|x′)2.

2This assumes that the zero-offset trace is generated with an impulsive point source with a smoothly varying background
velocity model, and then migrated by a poststack migration operation. It is always assumed that the direct arrival is muted and
there are no multiples.
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with the physical interpretation that [Γm]i is the migration Green’s function response at xi. An alterna-
tive interpretation is that [Γm]i is the weighted sum of basis functions Γ(xi|z j) where the weights are 
the reflection coefficients m j and the summation is over the j index. We will now consider this last 
interpretation and redefine the problem as finding both the weights m j and the basis functions Γ(xi|z j). 
This will be shown to be equivalent to the problem of a fully connected (FC) neural network.

Theory of Neural Network LSM

The neural network least squares migration (NNLSM) algorithm in the image domain is defined as 
solving for both the basis functions Γ̃(xi|x j) and m̃ j that minimize the objective function defined in 
equation 1. In contrast, SLSM only finds the least squares migration image in the image domain and 
uses the pre-computed migration Green’s functions that solve the wave equation.

The NNLSM solution is defined as

(m̃∗, Γ̃∗
) = argmin

m̃, Γ̃

[1
2
||Γ̃m̃−mmig||22 +λS(m̃)

]
, (7)

where now both Γ̃ and m̃ are to be found. The functions with tilde’s are mathematical constructs that are
not necessarily identical to those based on the physics of wave propagation in equation 1.

The explicit matrix-vector form of the objective function in equation 7 is given by

ε =
1
2 ∑

i

[
∑

j
Γ̃(xi|z j)m̃ j −mmig

i

]2
+λS(m̃). (8)

and its Fréchet derivative with respect to Γ̃(xi′ |z j′) is given by

∂ε
∂ Γ̃(xi′ |z j′)

= ∑
j
(Γ̃(xi′ |z j)m̃ j − m̃mig

i′ )m̃ j′ . (9)

The iterative solution of equation 7 is given in two steps (Olshausen and Field, 1996).

1. Iteratively estimate m̃i by the gradient descent formula used with SLSM:

m̃(k+1)
i = m̃(k)

i −α[Γ̃T
(Γ̃m̃−mmig)]i −λS(m̃)′i. (10)

However, one migration image mmig is insufficient to find so many unknowns. In this case the
original migration image is broken up into many small pieces so that there are many migration
images to form examples from a large training set. For prestack migration, there will be many
examples of prestack migration images, one for each shot.

2. Update the basis functions Γ̃(xi|z j) by inserting equation 9 into the gradient descent formula to
get

Γ̃(xi′ |z j′)
(k+1) = Γ̃(xi′ |z j′)

(k+1)−α
∂ε

∂ Γ̃(xi′ |z j′)
,

= Γ̃(xi′ |z j′)
(k+1)−α(

{
∑

j
Γ̃(xi′ |z j)m̃ j

}
−mmig

i′ )m̃ j′ . (11)

It is tempting to think of Γ̃(x|x′) as the migration Green’s function and m̃i as the component of
reflectivity. However, there is yet no justification to submit to this temptation and so we must con-
sider, unlike in the SLSM algorithm, that Γ̃(x|x′) is a sparse basis function and m̃i is its coefficient.
To get the true reflectivity then we should equate equation 6 to ∑ j Γ̃(xi,x j)m̃ j and solve for m j.
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Figure 1 a) Three-layer velocity model, b) RTM image, and c) migration image (blue curve) at X=0.5 
km, where the red curve is the normalized reflectivity model. d) Basis function (also known as a 
feature), e) modified feature, and f) calculated coefficients (also known as a feature map) m̃ (blue) and 
reflectivity model (m).

Numerical Examples

We will test the feasibility of estimating the basis functions and coefficients for NNLSM in the image 
domain. No particular application is addressed, except the success of the following tests should point 
the way towards using unsupervised learning methods for extracting features that can be inverted by the 
wave equation (Schuster, 2018).

The three-layer velocity model shown in Figure 1a is used to test NNLSM by the unsupervised 
feature learning method of convolutional sparse coding (Liu et al., 2018). The grid size of the model 
is 101 by 101. The grid interval is 10 m in both the x and z directions. There are 26 shots evenly 
spaced at a distance of 40 m on the surface. Each shot is recorded by 101 receivers with a sampling 
interval of 10 m. Figure 1b shows the reverse time migration (RTM) image.

The first test is for a 1D model where we extract the image located at X= 0.5 km, which is displayed as 
the blue curve in Figure 1c. The red curve in Figure 1c is the reflectivity model. Assume that there is 
only one basis function (feature) Γ̃ and it extends over the depth of 400 m (41 grid points). Equation 7 is 
solved for both m̃ and Γ̃ by the two-step iterative procedure denoted as the alternating descent method. 
The computed basis function is shown in Figure 1d where the phase of the basis function Γ̃ is nonzero. 
However, the “physical” Γ is zero phase according to equation 5. If we use a nonzero-phase basis 
function Γ̃ to calculate its coefficient vector m̃ , the phases of the coefficient vector m̃ (also known as the 
feature map) and the true reflectivity m will be different. So, we need to modify the phase and polarity 
of the basis function Γ̃ . The modified basis function is shown in Figure 1e, and its coefficients are 
displayed as the blue curve in Figure 1e. Compared with the true reflectivity m (red curve in Figure 1f), 
the feature map can give the correct positions but wrong values of the reflectivity distribution.

Next, we perform a 2D test where the input is the 2D migration image in Figure 1b. Three 35-by-35 
(grid point) features are learned (see Figure 2a), where a feature is also denoted as a basis function. The 
modified features are shown in Figure 2b. The feature maps of these three features are displayed in 
Figures 3a, 3b and 3c. Figure 3d shows the sum of these three feature maps. It is evident that the 
stacked feature maps can estimate the correct locations of the reflectivity spikes.
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Figure 2 a) Learned and b) modified features.

Figure 3 Feature maps for the features a) 1, b) 2, and c) 3 shown in Figure 2. The stacked feature 
map is shown in d).

Summary

Sparse least squares migration (SLSM) finds the optimal reflectivity distribution m(x) that minimizes 
a sum of migration misfit and sparsity functions. This problem can be reformulated by finding both 
the sparse coefficients m̃ (z) and basis functions Γ̃ (x|z) from the data to predict the migration image 
m(x)mig = ∑z Γ̃ (x|z)m̃ (z). This generalization of SLSM is designated as neural network least squares 
migration (NLSM). If the basis functions are required to be from the migration Green’s functions then 
NLSM reduces to SLSM. One possibility is to invert the feature maps using the wave equation as de-
scribed in Schuster (2018). NSLM provides new ideas from the technology of machine learning for 
improving least squares migration.
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